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SUMMARY 

We present here our experiences with using the spectral element methodology to solve convection-dominated 
problems. Different polynomial approximations are used inside the spectral elements and both conforming and 
non-conforming interface conditions are investigated. The three spectral element methods that we explore can all 
be considered to be special cases of the more general mortar element method. We compare the methods for solving 
incompressible fluid flow and heat transfer problems. Particular attention is given to the convection treatment. The 
numerical results can be strongly dependent upon whether a conforming or a non-conforming method is used as 
well as the particular form of the discrete convection operator (convective form versus skew-symmetric form). 

KEY WORDS: spectral element; non-conforming; incompressible flows; convection; skew-symmetric 

1. INTRODUCTION 

In this paper we shall focus our attention on the convection treatment when solving steady and 
unsteady incompressible fluid flow and heat transfer problems. In terms of spatial discretization we are 
particularly interested in allowing for domain decompositions (or elemental decompositions) that offer 
maximum flexibility in terms of resolving geometrical or functional features of the underlying 
problem. At the same time we would like to use a framework that is well suited for the development of 
efficient iterative solution algorithms, particularly algorithms suitable for parallel processing. 

An interesting and promising approach in this respect is the mortar element method.’ Independent 
variational discretizations on the subdomains are here coupled together through an intermediary mortar 
trace space. The mortar element method allows for both geometrically and functionally non- 
conforming discretizations and has been proven to be optimal for elliptic problems’ (optimal in the 
sense of providing a numerical solution with an error that is bounded by the sum of the local 
approximation errors). Recently a new non-conforming spectral element method was proposed’ which 
allows for p-type refinement and which offers particular advantages in terms of parallel 
implementation. However, it is not clear how these methods perform for convection-dominated 
problems. 

We remark here that significant progress has been made in recent years regarding adaptivity in the 
context of the traditional finite element framework.334 Fully adaptive h-p methods currently exist for a 
whole range of physical  application^.^-* However, all these methods emphasize a conforming 
approach.’ To the author’s knowledge there has not been a careful study that compares the impact of 
using different interface conditions for convection-dominated problems, at least not in the context of 
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the spectral element method or the mortar element method. Neither has there been a study that 
compares the impact of using different forms of the discrete convection operator (convective form 
versus skew-symmetric form) in the context of various interface conditions. 

The current study has been undertaken in order to better understand the potential as well as the 
limitation of the mortar element method to solve convection-dominated problems. As a starting point 
we shall limit our study to geometrically conforming elements, i.e. we shall consider what is also 
referred to as spectral elements.10"' We will, however, allow the polynomial degree to vary between 
the elements and we will consider both conforming and non-conforming matching conditions on the 
interfaces between the elements. 

Spectral element discretizations for partial differential equations combine spectral methods with 
domain decomposition techniques to obtain a high-order polynomial approximation of the solution 
within each subdomain. The key attractive features of this approach are rapid convergence for 
problems with sufficient regularity, geometric flexibility and suitability to medium-grained parallel 
implementation. 

The rapid convergence rate derives from the good approximation properties of piecewise high-order 
polynomials to functions with sufficient regularity.'o*' ' The geometric flexibility derives from the fact 
that the computational domain can be decomposed into a collection of elements which is globally 
unstructured. Each spectral element is a (possibly deformed) quadrilateral element in two space 
dimensions and a (possibly deformed) hexahedral element in three space dimensions. This type of 
discretization is thus characterized by a combination of (high-order) locally structured constructs and a 
globally unstructured representation, a fact that has made the spectral element method particularly well 
suited for medium-grained parallel computers. 

In some respects the spectral element method is very similar to the p-type finite element 
m e t h ~ d . ' ~ . ' ~ . ~  Within the p-type finite element framework, including the original spectral element 
Mework ,  the same polynomial approximation (p) is used within all the elements (or subdomains) 
and continuity of the discrete solution is enforced along the boundaries between adjacent elements for 
the discretization of second-order elliptic and parabolic equations. This continuity enforcement is 
consistent with a conforming approach insofar that the discrete space is a subspace of the continuous 
functional space." 

The key differences between the spectral element method and the p-type h i t e  element method are 
related to how the numerical schemes are derived and solved. The spectral element method puts a 
particular emphasis on tensor product forms: tensor product nodal bases, tensor product Gauss 
quadratures and tensor product sum factorization techniques for efficient matrix-vector product 

The emphasis on tensor product forms has made it possible to construct efficient 
iterative solvers for the discrete equations; this is particularly important when solving large three- 
dimensional The classical spectral element method has reached a high degree of 
maturity over the last few years in terms of both algorithm development and  application^.'^-^^ 

is an extension of the original spectral element method to non- 
conforming discretizations. The main difference compared with the original spectral element method is 
in terms of the interface treatment beween neighbouring elements (or subdomains). In the mortar 
element method the discrete solution is not restricted to be imbedded in the continuous functional 
space and this approach thus allows for the construction of more flexible discretizations. For example, 
local mesh refinement is more readily accommodated. This can be achieved by either splitting a given 
element into several smaller elements without affecting the neighbouring elements (h-refinement) or by 
changing the polynomial approximation within a given element @-refinement). The mortar element 
method thus provides the necessary framework for the development of fully adaptive h-p refinement 
procedures25726 as well as the coupling of spectral element methods with low-order k i t e  element 
methods?' The mortar element method is particularly attractive in the sense that it represents a domain 

The mortar element 
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decomposition approach in which there is a clean decoupling of local-structure-preserving internal 
residual evaluations and the transmissions of boundary (or continuity) conditions. 

We remark here that a key difference between the mortar element method and the h-p finite element 
method is in terms of the interface treatment between the elements. The mortar element method is 
based on a non-conforming approach through an explicit construction of an intermediary mortar trace 
space,' while the h-p finite element method is based on a conforming approach through the concept of 
constrained approximation.28 In addition to the interface treatment, the mortar element method and the 
h-p finite element method differ in terms of how the numerical schemes are derived and solved. 

We would also like to mention here that recently a different modification to the classical spectral 
element method was proposed2 for which the key advantage is related to a more efficient parallel 
implementation. Again the main difference between this approach and the classical spectral element 
method is related to the interface treatment. Here the continuity requirement on the solution is relaxed 
on the entire element interface, including the element vertices. 

In this paper we consider two modifications to the classical spectral element method that allow for a 
different polynomial approximation within each element or subdomain, i.e. we limit our discussion to 
spatial discretization procedures appropriate for p-type refinement. We shall investigate the difference 
in behaviour between the classical spectral element method SECLAS and the two modified methods 
SECONF and SENONC for the solution of second-order elliptic and parabolic problems. We note that 
all three methods that we consider in this study represent special cases of the more general mortar 
element method. ' 

Since SECLAS assumes both geometric and functional conformity and employs the same 
polynomial approximation within all spectral elements, there is no ambiguity about how to enforce the 
continuity requirement on the solution along elemental interfaces. This is no longer the case when we 
consider spectral element discretizations for which geometric conformity is enforced, but a different 
polynomial approximation is employed within each subdomain. We now have a choice between 
whether we still want to enforce functional conformity, SECONF, or whether we want to consider a 
non-conforming approach based upon the mortar element method, SENONC. For example, when 
considering the edge between two adjacent two-dimensional quadrilateral elements, SECONF will 
choose the edge values belonging to the element with the lowest polynomial degree as the real (master) 
degrees of freedom and then interpolate these values onto the edge with the higher polynomial degree. 
In SENONC the edge values belonging to the element with the highest polynomial degree will be 
chosen as the master nodes and these values are then projected onto the edge with the lower 
polynomial degree. Following the mortar element approach, the vertex values are kept the same, while 
the internal edge values are computed by requiring that the jump in the edge values be as small as 
possible; these projected internal edge nodes are denoted as slave nodes. 

The ultimate objective with this work is to be able to use the mortar element methodology in the 
context of fully adaptive h-p refinement  procedure^'^^ and to apply these more flexible discretizations 
to solve fluid flow and heat transfer problems. Again, the main issues we focus upon in this paper are 
related to the convection treatment, and we present numerical results that indicate the suitability of the 
various discretization methods to solve the steady and unsteady incompressible Navier-Stokes 
equations, particularly convection-dominated problems. It is the hope that these numerical results can 
be followed up with a theoretical analysis of the observed phenomena. 

The paper is organized as follows. In Section 2 we present the three methods SECLAS, SECONF 
and SENONC that we investigate here. We present the methods in the context of solving the Poisson 
equation and we demonstrate the good convergence properties of the methods. In Section 3 we apply 
the three methods to solve fluid flow and heat transfer problems. In particular, we focus upon the 
convection treatment for the steady and unsteady incompressible Navier-Stokes equations. 
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2. SPECTRAL ELEMENT DISCRETIZATION 

We consider here the solution of the Poisson problem in a two-dimensional domain R, 
- v 2 u = f  i n n ,  (1) 

u = O  o n m ,  (2) 

where f is the given data and u is the solution. As a point of departure for our numerical discretization 
we consider the equivalent variational formulation of problem (l), (2): find u E Hi@) such that 

Vv E Hi(R), In VuVv dx = fi, dr, I, (3 ) 

where 
As for the classical spectral element method, we assume that the domain R is broken up into K 

non-overlapping and conforming quadrilateral subdomains Rk, 1 < k < K .  This implies that the 
intersection of two elements R k  and n, is either empty or reduced to a common vertex or a common 
edge; in the latter case we define the open interval r k , ,  as 

is the standard Sobolev space. 

F k , ,  = a k  n =[. (4) 

Following closely the presentation in Reference 2, we shall focus our attention on the treatment along 
the interfaces (edges) rk,,. We first rewrite the original problem (3) by introducing the space Xdefined 
by2 

( 5 )  
x = {v = ( v k ) l 5 k s K *  "k H 1 ( n k ) ,  

- V k ,  1, 1 5 k 5 1 5 K ,  Vklj-k,f - V , l r k , f ,  V k l m  = 0) 

and instead consider the continuous problem: find a K-tuple u = (uk = u , l n , ) I z k j K  E X such that 

The discretization of problem (6) consists of choosing a finite-dimensional space X,  that 
approximates X find a K- tuple US = (U6,k = U S l n k ) l c k s K  E X,  such that 

Before we define our choices for the discrete space X,, we fist define the space Ys. Let N be a K-tuple 
of integers N = ( N k ) , + < K ,  where Nk is the degree of the polynomial approximation inside each 
subdomain. The spacey; is then defined as2 

y, = {vg = ( V g . k ) l c k c K >  vd,k p N k ( R k ) } .  (8) 

We are now in a position to define the three choices for X,  that we shall consider througout the rest 
of this paper. All of them are subspaces of Y,. 

SECLAS. This method is the classical spectral element method. In the context of the framework just 
presented, this method is defined by 

x, = y, nx, (9) 
N k = N ,  1 ( k L K ,  (10) 
N 21 .  (1 1) 
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In other words, SECLAS is a conforming method with the same polynomial approximation inside all 
the subdomains. Note that the condition (1 1) is necessary in order to meet the requirement (9). 

SECONE This method is defined simply by 
x, = Y, nx, 
Nk? 1,  1 S k s K .  

This method is still a conforming method, but here we do not put any restrictions on the polynomial 
approximation inside each subdomain, except for (1 3). 

SENONC. This method is the non-conforming mortar element method'*24 applied to elements with 
different polynomial degree inside each subdomain. Before we define the discrete space X,, we first 
define the vertices Nk,l,m, m = 1, 2, as the two vertices of the edge r k , l  defined in (4). 
The non-conforming space X, is then defined as 

x6 = (vb = (Vc5 ,k ) l<k<K E yhg v b , k l X l  = 0, 
Vk. 1, 

Vk, 1 1 < k < 1 < K, Vl(l E P N ; , , - ~ ( & J ) ,  ( v 6 , k  - va,/)l(l dl = O), (14) 

1 < K < I < K ,  V g , k ( N k . l . m )  = V ~ , / ( N ~ J , , ) ,  m = 1, 2, 

N k > 2 ,  l < k < K .  (15) 

In (1 4) N& is defined as the minimum of Nk and NI. 
At this point we remark that SECONF and SENONC reduce to SECLAS in the particular case of 

using a fixed polynomial degree in all the elements, i.e. Nk = N, k= 1, . . ., K. 
Once the space X6 has been defined, we have to choose a basis for this space as well as a quadrature 

rule for evaluating the integrals in (7). To this end we follow the same procedure as for the classical 
spectral element method, i.e. we construct a tensor product interpolant basis through the Gauss- 
Lobatto Legendre points associated with each subdomain, and these points are also chosen as the 
quadrature points. Since the basic implementation is not the focus of this paper, we refer the reader to 
the literature'.' 1924*29 for more details regarding how to construct the set of algebraic equations, 
including the extension to variable coefficients and deformed geometries. 

2.1. Numerical results: the Poisson problem 

To test the convergence properties of the three methods, we consider the Poisson problem in the two- 
2 dimensional, square domain R =] - 1, 1 [ , 

-v2u=f  inR,  (16) 
u = O  o n m .  (17) 

The exact solution u and the forcing function f are given as 

We break up the computational domain R into K = 4  equal subdomains (see Figure 1) and we 
compute the error JJu - uhll between the exact solution u and the numerical solution u h  in the discrete 
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Figure 1 .  The spectral element mesh used to solve the Poisson problems (16Hl 9). The domain is broken up into K = 4 equal 
quadrilateral elements, each of order Nb k= 1 ,  . . ., K 

seminorm for the different choices of polynomial approximations N = (Nk)l<k<K within the 
subdomains. Note that throughout the paper we assume that a spectral element equivalent to a 
subdomain. We also remark that for all the convergence results reported in this paper, the error is 
computed in the discrete seminorm; however, we use a finer mesh for this error calculation in order to 
avoid quadrature errors. For the results presented for the Poisson equation, we use a polynomial degree 
Mk = Nk + 3 inside each element, k = 1, . . . , K ,  in the error calculation. 

Even though we are considering the solution of the diffusion equation, we choose the forcing 
function f such that the solution u has the form of a two-dimensional boundary layer. The steepest 
gradients are close to the upper right corner of the domain (given by the co-ordinates (x = 1, y = 1)) 
and the parameter a determines how steep these gradients are. In our test case we choose a = 10; a 
contour plot of the solution is depicted in Figure 2. From Figures 1 and 2 we can now readily see that 
for this particular type of solution and elemental decomposition it should be advantageous to employ a 
different polynomial order inside the individual spectral elements. 

Figure 3 shows the results for the classical spectral element method SECLAS, for which 
Nl = N2 = N3 = N4 = N. Owing to the fact that the solution u and the data f are analytic, the expected 
exponential convergence rate is observed as the polynomial degree N is increased. In Figure 3 we also 
report the convergence results when employing SECONF (conforming) and SENONC (non- 
conforming), for which we choose Nl+i = N +  i, i = 0, 1, 2, 3. Again, as expected, we observe a 
similar rapid convergence rate as N is increased. We also observe that SECONF and SENONC give 
almost identical results and that for the same N the errors for SECONF and SENONC are roughly an 
order of magnitude smaller than the corresponding error for SECLAS. 

Figure 2. A contour plot of a spectral element solution to the Poisson problem (16H19), using the elemental decomposition 
depicted in Figure 1 
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2-D POISSON PROBLEM 
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Figure 3. ‘The error between the discrete solution and the analytical solution (1 B) for the Poisson problem (16H19). The plotted 
error is the relative error in the discrete seminorm as a hct ion of the polynomial approximation N within each of the K = 4 

spectral elements. For SECLAS, N, = N2 = N, = Nq = N, while for SECONF and SENONC, N, +, = N+ i, i = 0, 1 ,  2, 3 

This test demonstrates the potential advantage of being able to locally refine the solution where 
additional resolution is needed. It also serves as a verification of the implementation of the spatial 
discretization methods that we consider in this study. Finally, we remark that in order for these methods 
to be attractive in an adaptive context, we also need to have good error estimators as well as efficient 
solution methods for the resulting set of algebraic equations. In this paper, however, we shall limit our 
discussion to the suitability of the various spatial discretization methods to solve fluid flow and heat 
transfer problems. In particular, the convection treatment will be our primary focus in what follows. 
Efficient solution methods are the focus of a separate paper.30 

3. THE NAVIER-STOKES EQUATIONS 

We now turn to the discretization of the unsteady incompressible Navier-Stokes equations 
au - + u . vu - VV’U + vp = f in R, 

V . u = O  i n n .  
at 

In (20) and (21) u is the fluid velocity, p is the pressure, v is the kinematic viscosity and f is a body 
force. We assume prescribed velocity boundary conditions on the domain boundary iKz as well as 
initial conditions for the velocity for unsteady problems. 

Similarly to the Poisson problem discussed in Section 2, a spectral element discretization of (20) and 
(21) is based on the equivalent weak form. For two-dimensional problems and homogeneous velocity 
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boundary conditions we can formulate the problem as: find u E [Hi(Q)l2 and p E Li(Q) such that 

(2, w) + (u. v u ,  w) + v(Vu, VW) - (p, v . w) = (f, w), vw E [H,'(l-2)]*, (22) 

(V . u, 4) = 0, vq E L@), (23) 
where Li(f2) is the space of all functions which are square integrable and have zero average over R In 
(22) and (23) the inner product (., .) is defined as 

V@, Y E L2(Q), (0, Y )  = @Y m. J, 
3.1. Spatial discretization 

For the spatial discretization of (20) and (21) we follow the same approach as employed by the 
classical spectral element method (SECLAS). We refer the reader to the literature' 1,22*29 for more 
details regarding the theoretical justification, implementation and numerical results. The key features 
comprise the use of the weak form (22), (23) and the use of compatible approximation spaces for the 
velocity and pressure. The same procedure is also followed when implementing SECONF and 
SENONC. The only difference between the three methods is the way the velocity is being treated on 
the interface between adjacent elements. 

Using the notation from Section 2, the approximation space for the discrete (two-dimensional) 
velocity ug is 

With the definition of the space Yg given in (8), we define the related space 
ua Ex;. (25) 

= {vg = ( v g , k ) l ~ k ~ K ~  v6,k p N k - 2 ( Q k ) ) -  (26) 

(27) 

The approximation space for the discrete pressure pa is then 

pa E Tg n L ~ ( Q ) ,  
i.e. the polynomial degree for the pressure is two orders lower than for the velocity inside each 
subdomain (or spectral element).22*3' We remark that since the pressure needs only be square 
integrable, no continuity requirement for the pressure is enforced between elements and therefore the 
pressure treatment is identical for all three methods. We now turn to the convection treatment. 

3.1.1. Comection treatment. One of the primary objectives of this work is to investigate and 
compare the use of conforming and non-conforming spectral elements (SECLAS, SECONF and 
SENONC) for the solution of the incompressible Navier-Stokes equations, particularly for convection- 
dominated problems. The ultimate goal is to construct proper multidomain spectral techniques that can 
be used in the context of adaptive procedures. 

The main issue we shall address here is concerned with the proper form of the discrete convection 
operator. Specifically, we shall compare the use of the convection form and the skew-symmetric form, 
both in the context of solving the steady Navier-Stokes equations as well as in the context of 
integrating the unsteady equations. 

We first present the different choices for the convection operator in the context of incompressible 
fluid flow. For the convection of a scalar field 0 (e.g. temperature or one of the velocity components) 
the alternative forms of the convection operator Y are 

TO = u. ve, (28) 
y e  = v- ue, (29) 
t e  = fU. ve + p- ue. (30) 
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The first form is called the convective form, the second the conservative form and the third the skew- 
symmetric form (the average of the first two forms). For solenoidal velocity fields, all three forms are 
equivalent in the continuous case; however, this is not the case for the associated discrete operators. 
There have been several studies in the past which have compared the different forms.29*32-34 These 
studies seem to indicate that the skew-symmetric form is preferable for multidimensional problems. 
We remark that for incompressible fluid flow there is also an additional form, the rotational form, that 
can be used. However, we will not study this form here. The reason is that this form has somewhat 
similar conservation properties to the skew-symmetric form and the latter form has been shown to be 
superior in earlier work. 

The reason why the skew-symmetric form is attractive will become clearer when we discuss how the 
boundary conditions imposed on the boundary aR affect the properties of the convection operator. To 
see this, we first multiply (28) by a test function $ and integrate over the domain R; we then integrate 
by parts and finally use the incompressibility constraint to obtain 

or 

where I,(@ is the surface integral 

and ii denotes the outward unit normal on the domain boundary It follows that for the class of 
homogeneous boundary conditions on 8 and $ for which the surface integral Zm(e) vanishes, the 
convection operator r is skew-symmetric. The corresponding set of homogeneous, linear boundary 
conditions will be denoted as 

A,,e = 0. (34) 

Examples of skew-symmetric boundary conditions include the specification of t9 on some segment of 
an, the imposition of periodicity on 6 over some pair of segments on 82 and no specification of 
boundary conditions on 8 over a segment of aR for which u . i  = 0. We M e r  assume that the 
imposed boundary conditions lead to a well-posed system. The skew-symmetric property implies that t 
has imaginary eigenvalues, reflecting the fact that the convection operator is nondissipative. 

Another important class of boundary conditions is the 'outflow' boundary conditions. In this case no 
specification of 0 is imposed on a segment of X2 for which u . ii > 0. The extended set of boundary 
conditions that includes outflow as well as skew-symmetric boundary conditions will be denoted as 

9 8  = 0. (35) 

In the case of outflow conditions the boundary integral Ian(@ does not vanish and %' is no longer skew- 
symmetric. It can be shown that the eigenvalues are now in the right-hand plane (0, &) > 0, reflecting 
the fact that energy is leaving the domain R. 

We are now in a position to explain why it may be advantageous to use the skew-symmetric form 
(30) instead of the convective form (28) (or the conservative form (29)). In deriving the skew- 
symmetric property for the convective form of x in the case of &,8 = 0 (see (3 l)), we use the fact that 
the velocity field is incompressible; however, the proof of the skew symmetry for x as defined in (30) 
does not rely on the fact that the velocity field is solenoidal. In any discrete scheme this is important for 
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stability, since the sense in which the velocity field is incompressible may not be consistent with 
integration by parts. The implication of this is that, even in the presence of quadrature errors, a discrete 
convection operator based upon the skew-symmetric form will also be skew-symmetric for skew- 
symmetric boundary conditions, i.e. all the discrete eigenvalues will be imaginary. In many cases this 
is very desirable, at least if energy conservation is important. 

In terms of computational cost we remark that the skew-symmetric form is approximately twice as 
expensive as the convective form in terms of matrix-vector product evaluations; this is primarily due to 
the fact that the skew-symmetric form requires the evaluation of both the convective form and the 
conservative form (see (28H30)). We also remark that the convective form is easier to implement than 
the skew-symmetric form. This is particularly true for outflow boundary conditions, in which case the 
skew-symmetric operator also includes the boundary term (33). 

3.2. Numerical results: the steady Navier-Stokes equations 

We now illustrate the spatial convergence rate associated with the spectral element discretization of 
the steady two-dimensional Navier-Stokes equations. Kovasznay3' gives an analytical solution to the 
Navier-Stokes equations which is similar to the two-dimensional flow field behind a periodic array of 
cylinders: 

(3 6) h u = 1 - e- cos(27zy), 

J -h v = -e sin(2ny), 
2.n 

2 = $Re f ,/CRe' + 4n2), 
where Re is the Reynolds number based on the mean flow velocity and separation between vortices. 
We solve this problem numerically in the case of Re =40 and 1 = $Re - ,/CRe' + 4n2), imposing 
the analytical velocity solution on the domain boundary. 

In Figure 4 we show the decomposition of the domain 0 =] - 0.5, l.O]x] - 0.5, 1.5[ into K =  6 
equal quadrilateral spectral elements. For SECLAS the polynomial approximation N used inside each 
element is the same for all the elements. For SECONF and SENONC half the elements employ a 
polynomial approximation equal to Nand the other half use N +  3. Figure 5 depicts the velocity vectors 

Figure 4. A plot of the spectral element decomposition and the polynomial order that is used within each spectral element when 
solving the Kovasznay problem (36H38) with SECONF (conforming) and SENONC (non-conforming). Half the elements use 
order N, while the other half employ order N+ 3. For SECLAS the polynomial approximation is N for all the elements 
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Figure 5. Velocity vectors for the two-dimensional Kovasznay solution (36H38). The Reynolds number based on vortex 
separation, mean flow speed and kinematic viscosity is Re = 40. The computational domain is broken up into K =  6 quadrilateral 
spectral elements. The results are obtained with the non-conforming method (SENONC) for a polynomial approximation N= 7 

when using SENONC with N =  7; in the centre of the domain we can clearly see that a different 
polynomial approximation is used in the adjacent elements. 

Similarly to the convergence study presented earlier for the Poisson problem, the errors we present 
for the Kovasznay problem are also computed in the discrete seminorm. We use a polynomial degree 
Mk = N k  + 2 inside each element, k = 1, . . ., K, in the error calculation. 

The set of fully coupled, discrete equations are solved by first linearizing the discrete equations 
(Newton iteration) and then solving each linearized system by a global iterative procedure. The reason 
for using an iterative method is primarily due to the relatively large bandwidth associated with high- 
order methods; using a direct solver is only practical for relatively low values of the polynomial degree 
N. The iterative procedure we use here comprises a global GMRES iteration36 in conjunction with a 
domain-decomposition-based preconditioning. The type of preconditioning we use to solve the set of 
non-symmetric equations is inspired by the development of iterative substructuring methods for elliptic 
 problem^.^' Although the development of good solution methods represents a very important aspect in 
the development of adaptive procedures, our focus in this study is limited to the discretization aspect. 
In particular, we limit our study to finding spectral element spatial discretization methods appropriate 
for use in the context of p-refinement procedures and suitable for solving convection-dominated fluid 
flow and heat transfer problems. The particular details regarding the iterative solution algorithm are 
reported in a separate paper.30 

We now present the convergence results for SECLAS, SECONF and SENONC, both in the context 
of using the convective form of the convection operator as well as the skew-symmetric form. Figure 6 
shows the relative velocity error as a function of the polynomial degree N for a fmed number of 
elements, K = 6, when using the convective form; Figure 7 shows the corresponding results for the 
skew-symmetric form. Spectral convergence is clearly achieved for all cases for this smooth solution. 
However, there are several features worth commenting on. First, there is a significant difference in the 
convergence rate when comparing the results for the convective form with the results for the skew- 
symmetric form. For example, for N =  10 the error when using the convective form is roughly three 
orders of magnitude smaller than the corresponding error for the skew-symmetric form. 

Even though there is no theoretical analysis available yet, we would like to make a conjecture as to 
the reason for the ‘poor’ performance of the skew-symmetric operator. For this problem, we impose 
Dirichlet velocity boundary conditions on the whole boundary i.e. Zan(u) = 0 and 9=u = 0. 
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Figure 6. The error behveen the computed velocity and the analytical solution (36H37) for t$e Kovasmay problem defined in 
the domain i2 =] - 0.5. 1 . O [ x ]  - 0.5, 1.5[. The plotted error is the relative error in the discrete seminorm as a function of the 
polynomial approximation N within each of the K = 6 spectral elements. Note that for SECONF and SENONC half the elements 
employ order N + 3 as depicted in Figure 4. The convective form of the convection operator is used for SECLAS, SXOYF and 

SENONC 

However, the exact velocity that is prescribed on the boundary for the continuous problem cannot be 
represented in terms of piecewise high-order polynomials (see (36) and (37)), and the boundary 
conditions are therefore only approximated in the discrete problem. The implication is that 
Zm(ua) # 0. We note that when using the skew-symmetric form of the convection operator in 
conjunction with the skew-symmetric boundary conditions, the associated discrete operator is still 
skew-symmetric (by construction); however, some accuracy will be lost owing to the imposition of 
inexact velocity boundary conditions. We also note that the discrete convection operator based upon 
the convective form does not require Im(u) = 0 and therefore this form is less sensitive to inaccurate 
representation of the velocity boundary conditions. 

To test this hypothesis, we repeat the convergence study, but now considering only the solution 
inside the lower quarter of the original domain, i.e. Q =] - 0.5, 1 .O] x ]  - 0.5, O.O[. The implication of 
this is that the velocity boundary condition is much better approximated in the y-direction where the 
variation in velocity is the greatest. The convergence results are presented in Figures 8 and 9. Indeed, 
we now see that the convergence rate for the convection form and the skew- symmetric form is 
essentially the same. 

We now continue the discussion of the convergence results with emphasis on the difference in 
behaviour between SECLAS, SECONF and SENONC. For the convective form (see Figures 6 and 8) 
the results indicate that all three methods give comparable results, with SECONF giving the smallest 
and SECLAS the largest error for a fixed value of N. However, the difference in error between the three 
methods is less than a factor of two, a fact that perhaps can be explained from a purly approximation 
point of view. In the case of using SECONF and SENONC, half the elements employ a polynomial 
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Figure 7. The ermr between the computed velocity and the analytml solution (36)-(37) for the Kovasznay problem defined in 
the domain R =] - 0.5, 1 .O[ x]  - 0.5, 1.5[. The plotted error is the relative error in the discrete seminorm as a function of the 
polynomial approximation N within each of the K = 6 spectral elements. Note that for SECONF and SENONC half the elements 
employ order N+3 as depicted in Figure 4. The skew-symmetric form of the convection operator is used for SECLAS, 

SECONF and SENONC 

degree Nand the other half N + 3. The local approximation error inside the elements with a polynomial 
degree N + 3 should therefore be much smaller than the corresponding error inside the elements with a 
polynomial degree N, resulting in at most a factor-of-two reduction in the global approximation error. 
Since we expect the discretization error to be only a constant away from the best approximation 
error,'*'' this could explain the observed results. 

For the skew-symmetric form we made the observation that an inaccurate representation of the 
velocity boundary conditions seems to result in a significantly reduced convergence rate compared 
with the use of the convective form (see Figures 6 and 7). In addition, the results in Figure 7 for the 
original, larger domain indicate that the error for the non-conforming method SENONC, is generally 
two to five times larger than for the classical spectral element method SECLAS, while SECONF 
generally gives the best result. The comment we would like to make here is that for the terms in the 
weak form that are derived using integration by parts, the associated boundary terms that result are 
defined on all elemental boundaries, both along the external boundary aR as well as along the 
interelemental boundaries which we will denote as r (all rk,, as defined in (4)). For example, for the 
spectral element decomposition considered here, the surface integral in (33) is defined not only over lX2 
but also along r. For the conforming methods SECLAS and SECONF, the surface integral along an 
edge rk,, will be identically zero owing to the cancellation of the contribution fiom the adjacent 
elements Rk and 0,. For the non-conforming method SENONC, the surface integral along r will not 
be zero, i.e. Z,-(ug) # 0. It appears from the numerical results in Figure 7 that if the approximation of 
the Dirichlet velocity boundary conditions is poor (laR(ub) is large in a certain sense), this is 
aggravated by the fact that Zr(ug) # 0. 
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Finally, when we consider the more well-resolved case (including boundary conditions) 
corresponding to the skew-symmetric results in Figure 9, we notice that all three methods again 
give comparable results and that these results are almost identical with the corresponding results when 
using the convective form (see Figure 8). 

3.3. Tempoml discretization 

The temporal discretization of (20) and (2 1) that we shall use here is characterized by a semi-implicit 
operator-splitting approach.38 The treatment of each time step is broken up into three substeps: an 
explicit convection step, an implicit viscous step and an implicit pressure step. This decoupling of the 
spatial operators is motivated by the fact that the operators can typically be treated computationally 
more efficiently by handling them separately rather than as an ensemble. 

Following such an operator-splitting approach, the convection operator is typically treated explicitly. 
The reason for this is that for large two- and three-dimensional problems, iterative solvers are currently 
the only viable approach, particularly for high-order methods. 12,'721 Since iterative solvers for non- 
symmetric systems are less mature compared with their symmetric counterparts, an explicit convection 
treatment has been preferred in the past, although the resulting Courant limitation on the allowable 
time step can sometimes be restrictive. One approach for the convection step is to use a third-order 
Adams-Bashforth multistep scheme,39 which only results in a partial decoupling from the viscous and 
pressure steps (the time step has to be the same). An alternative approach for the explicit convection 
step is to use the method of characteristics:' in which several (inexpensive) convection substeps can 
be completed before acting with the (expensive) discrete Stokes operator.38 
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Figure 9. The error betwcen the computed velocity and the analyt~cal solution (36H37) for the Kovasmay problem defined in 
the reduced domain Q =] - 0.5. I .O[x] - 0.5, O.O[. The plotted error is the relative error in the discrete seminorm as a function 
of the polynomial approximation N within each of the K =  6 spectral elements. Note that for SECONF and SENONC half the 
elements employ order N + 3 as depicted in Figure 4. The skew-symmetric form of the convection operator is used for SECLAS, 

SECONF and SENONC 

3.4. Numerical results: the unsteady Navier-Stokes equations 

The purpose of this subsection is to investigate the behaviour of SECLAS, SECONF and SENONC 
defined in Section 2 for solving unsteady convection4ifision problems. This investigation was 
motivated by the fact that we sometimes experienced stability problems when employing SENONC. 

3.4.1. Flow past a cylinder: As an illustrative example we consider first the flow past a cylinder at 
Re = 200 based on the cylinder diameter. The computational domain is depicted in Figure 10 together 

Figure 10. A plot of the computational domain and the spectral element decomposition for solving the Row past a cylinder at 
Re = 200 based on cylinder diameter, inlet velocity and kinematic viscosity. The flow is from left to right. The velocity is 
specified along the inflow boundary, no-slip boundary conditions are specified along the cylinder and outflow (zero Neumann) 
boundary conditions are specified on the rest of the domain boundary. The domain is broken up into K =  76 quadrilateral spectral 

elements (some of them deformed) 
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with the spectral element decomposition. At the inlet we specify Dirichlet velocity boundary 
conditions: the x-component of the velocity is set equal to unity, while the y-component is set equal to 
zero. No-slip boundary conditions are specified along the cylinder, while zero Neumann (outflow) 
boundary conditions are specified along the rest of the domain boundary. We remark that these 
boundary conditions do not correspond to skew-symmetric boundary conditions. 

We also solve an associated convection4ifision heat transfer problem in which the Peclet number 
is equal to the Reynolds number. The boundary conditions for this problem are zero temperature along 
the inflow boundary, unit temperature specified along the cylinder wall and zero flux everywhere else. 
The heat transfer problem is included here for visualization purposes. 

For all the results reported below, the computational domain is broken up into K = 76 subdomains or 
spectral elements (see Figure 10). The unsteady incompressible Navier-Stokes equations are solved 
using SECLAS with N = 7 until a von Karman vortex street has developed. The solution at this time is 
used as an initial condition for the simulation results that we now present for SECONF and SENONC. 
The viscous term is treated with a first-order backward differentiation scheme and the convection step 
is treated by the method of characteristics, in which a fourth-order explicit Runge-Kutta scheme is 
employed.38739 Each simulation result we present is the result we obtain after 1000 time steps, using a 
time step equal to Af = 0.05 and starting from the initial conditions including an already developed von 
Karman vortex street. 

For all the test cases we report below, we choose the polynomial approximation in each element in 
the upstream part of the computational domain to be the same and equal to N- , while the polynomial 
approximation in the downstream part of the domain is equal to N+ (see Figure 11). For SECLAS we 
always have N- = h'+ = N. For SECONF and SENONC we choose either N- = N and iV+ = N + 1 or 
N - = N + l  a n d p = N .  

First we consider the case with N- = 9  and hrt = 8. In Figure 12(a) we show the temperature 
contours when using SECONF in conjunction with the convective form of the convection operator. In 
this case SECONF and SENONC are both stable regardless of whether the convective or the skew- 
symmetric form is used. The results that are obtained in all these cases look almost identical and hence 
we only show one of them here. 

= 9. For this problem SECONF is again 
stable regardless of whether the convective or the skew-symmetric form is used. However, when using 
SENONC in conjunction with the convective form of the convection operator, the solution becomes 

Next we reverse the situation by choosing N- = 8 and 

Figure 11. The distribution of the polynomial order that is used within each spectral element when solving the flow past a 
cylinder at Re = 200. The polynomial approximation in each element in the upstream part of the computational domain is N-, 
while the polynomial approximation in the downstream part of the domain is N+ (dark region). For SECLAS we always have 

N- = p  = N. For SECONF and SENONC we choose either N- =Nand N+ =N+ 1 or N- = N +  1 and iV+ = N 
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Figure 12. Results for flow past a cyllnder at Re=2OO. For visualization purposes we show the temperature contours for the 
associated convection4ifiion problem at Pe = 200. The presence of a von Karman street is clearly seen. In (a) we show the 
result using SECONF with N- = 9 and N = 8 and using the convective form of the convection operator. In (b) we show the 

result using SENONC with N- = 8 and = 9 and using the skew-symmetric form of the convection operator 

unstable at roughly the same time independently of the choice of time step. The reason for this is that 
the explicitly treated convection operator appears to be unstable when the flow is going from a lower- 
order element into a higher-order element. However, if we repeat the experiment with SENONC but 
now using the skew-symmetric form of the convection operator, the solution process is stable and the 
result after 1000 time steps (see Figure 12(b)) looks almost identical with the result displayed in Figure 
12(a). 

3.4.2. Two-dimensional channelflow. In order to investigate the cause of the observed instability, 
we consider the model problem of solving the unsteady Navier-Stokes equations in the square domain 
R =] - 1, 1 [2 (see Figure 13(a)), specifying a parabolic velocity profile at the inlet and outlet and no- 
slip boundary conditions on the top and bottom walls. The initial conditions for the velocity are set to 
zero, except for the non-homogeneous velocity boundary conditions. 

The computational domain is broken up into K = 4  equal squares Rk, k= 1, 2, 3, 4, and the 
polynomial approximation used inside each subdomain is Nb k= 1, 2, 3, 4 (see Figure 13(b)). The 
unsteady Navier-Stokes equations are integrated for different values of the Reynolds number 
Re = VH/v.  Here V is the maximum velocity at the inlet and H is the channel half-width. We repeat the 
calculations for all three methods SECLAS, SECONF and SENONC. 
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(b) 
Figure 13. (a) Boundary conditions and (b) domain decomposition for the two-dimensional channel flow problem 

We choose the polynomial approximation in each subdomain to be N1=Nz=N- and 
N3 = N4 = N+. Here the signs - and + are associated with the upstream part and the downstream 
part relative to the centre of the domain respectively (x < 0 and x > 0). For SECLAS we always have 
N -  = PI+ = N. For SECONF and SENONC we choose either N -  = N and hrt = N + 1 or N -  = N + 1 
andhrt=N. 

First we integrate the unsteady Navier-Stokes equations by following an operator-splitting approach 
in which the viscous operator is treated by a first-order (implicit) backward differentiation scheme and 
the convection operator is treated either by a third-order explicit Adam-Bashforth scheme" or by a 
fourth-order explicit Runge-Kutta Our experience has been the following: when the 
Reynolds number is small (Re -= IOO), all three methods are stable. However, for Re = 200, say, 
SENONC is unstable if N- -= hrt and the convective form of the convection operator is used. The 
instability seems to occur roughly at the same time independently of the choice of time step. 

Secondly we integrate the unsteady Navier-Stokes equations using a fully coupled, filly implicit 
approach (a first-order backward differentiation scheme). In this case no stability problems are 
observed for any of the three methods or for any form of the discrete convection operator. 

These results, together with the simulation results for the flow past a cylinder, suggest that the 
observed instability for non-conforming discretizations is associated with the use of an explicit time 
integration scheme as well as the use of the convective form of the convection operator. Since the 
stability of an explicit time integration scheme is closely linked to the eigenvalues of the associated 
discrete spatial operator, we now compute the entire set of eigenvalues for the various discrete 
convection operators. 

We consider the discrete eigenvalue problem 

-C+ LB+, (39) 

where C is the discrete two-dimensional convector operator, B is the mass matrix, JI represents a 
discrete eivenvector and r7. represents the corresponding discrete eigenvalue. In (39) we choose the fully 
developed (parabolic) velocity field for channel flow as the convecting field. Figure 14 shows the entire 
spectrum when using SECLAS with N=4.  We see that all the eigenvalues lie on the imaginary axis, 
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which explains why the explicit treatment of the convection operator is stable as long as the time step is 
small enough so that IAt lies within the absolute stability region of the pertinent explicit time 
integration scheme.39 

The results in Figure 14, as well as the following results that we will present, are all obtained with 
the convective form of the convection operator. By construction, for skew-symmetric boundary 
conditions, as in this case, the skew-symmetric form always results in a discrete convection operator 
with purely imaginary eigenvalues, and the spectra associated with this operator are therefore not 
shown (they all look similar to the results in Figure 14). 

Next we consider the case with N -  = 4 and ?@ = 5 .  Figure 15 shows the entire spectrum when 
using SECONF, while Figure 16 shows the corresponding results for SENONC. We notice that the 
eigenvalues are no longer lying exactly on the imaginary axis. The conforming approach SECONF 
moves some of the eigenvalues into the left-hand plane, which explains why this approach still is stable 
as long as the Courant condition is satisfied. The nonconforming approach, however, moves some of 
the discrete eigenvalues into the right-hand plane, which explains the observed instability. In particular 
we observe one eigenvalue rZ with the property Im(I) = 0 and Re(2) > 0. Since this eigenvalue cannot 
be moved inside the absolute stability regions for the explicit Adams-Bashforth methods or the explicit 
Runge-Kutta method for any choice of the time step, SENONC will always cause instability for this 
choice of spatial discretization. The fact that no instability is observed for low Reynolds numbers is 
most likely due to the fact that the diffusion is large enough to act as a stabilizer (or that the grid Peclet 
number is small enough). 

We now repeat the above experiments for SECONF and SENONC (again in conjunction with the 
convective form of the convection operator), but this time we choose N -  = 5  and w = 4 .  Both 
methods are now stable and the associated spectra for the discrete convection operators are shown in 

CONVECTION OPERATOR (CONVECTIVE FORM) 

Figure 14. Eigmvalues of the discrete convection operator for two-dimensional channel flow. The results are for SECLAS with 
N=4 for all K = 4  spectral elements 
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Figure IS. Eigenvalues of the discrete convection operator for two-dimensional channel flow. The results are for SECONF with 
N I = N 2 = N - = 4 a n d N , = N q = ~ = 5  
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Figures 17 and 18. In particular we notice that the spectra in Figures 17 and 18 are the mirror images of 
the spectra in Figures 15 and 16 around the imaginary axis. 

Finally we remark that the above results also explain the fact that no stability problems are observed 
when solving the discrete equations using a fully coupled, fblly implicit approach. 

4. CONCLUSIONS 

In this study we have solved convection-diffusion problems using spectral elements of equal or 
different order. We have compared the use of conforming and non-conforming methods as well as the 
use of a convective form and a skew-symmetric form of the discrete convection operator. Both steady 
and unsteady problems have been solved numerically. 

For steady convection-difiion problems the convective form of the convection operator seems to 
be the best choice given the fact that this is the simplest form in terms of evaluation and 
implementation, it gives good accuracy and it seems to be stable for the conforming and non- 
conforming methods investigated in this work (regardless of flow direction). 

Earlier work indicated that the skew-symmetric form is more accurate than other forms of the 
discrete convection operator. For one of the test problems presented in this study (the Kovasmay 
problem), some of the results indicate that the convective form and the skew-symmetric form give 
comparable errors for the same spatial resolution. However, some of the results also indicate that the 
skew-symmetric form can be substantially less accurate than the convective form in the case of inexact 
representation of the velocity (Dirichlet) boundary conditions. Fortunately, the specification of the 
velocity on part of the (or the whole) domain boundary typically consists of the specification of a 
relatively smooth h c t i o n  (e.g. constant, parabolic, etc.). Hence, in many practical cases, the velocity 
boundary conditions are well resolved and the difference in accuracy between the convective form and 
the skew-symmetric form might not be significant. 

For unsteady problems, our initial experience has been that care has to be taken when using a non- 
conforming method, particularly for convection-dominated problems. The numerical results indicate 
that if the flow is going from a lower-order element into a higher-order element, and if a convective 
form of the convection operator is used, instabilities can occur with an explicit treatment of the 
convection operator regardless of the choice of time step. In contrast, the numerical results indicate that 
the combination of a skew-symmetric form and explicit time integration schemes is conditionally 
stable (CFL condition) in the context of using both conforming and non-conforming methods. 

If implicit time-stepping procedures are used, the results indicate that both the convective form and 
the skew-symmetric form will work well in combination with both conforming and non-conforming 
discretizations. 

The three variants of the spectral element method that we have used in this study can all be regarded 
as special cases of the mortar element method. We are ultimately interested in developing fast and 
robust domain decomposition algorithms where the full generality of the mortar element method is 
exploited. Since the general case comprises both geometrically conforming and non-conforming 
discretizations, the general case dictates the need for robust convection treatment for non-conforming 
discretizations. If the conclusions from this study also apply to the general case, a klly non- 
conforming discretization based on the mortar element method could potentially be used with success 
for solving steady and unsteady convection-dominated problems. Based on the results from this study, 
we would favour the use of a convective form of the convection operator and implicit time-stepping 
techniques for unsteady problems. 

We hope that the results presented in this study will be followed up with a theoretical analysis in 
order to confirm the findings, to better understand the results and perhaps also to construct improved 
high-order discretization methods for convection-diffusion problems. 
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Figure 17. Eigenvalues of the discrete convection operator for two-dimensional channel flow. The results are for SECONF with 
N , = N , = N - = 5  and N 3 = N 4 = p = 4  
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Figure 18. Eigenvalues of the discrete convection operator for two-dimensional channel flow. The results are for SENONC with 
N l = N z = N - = 5  and N , = N 4 = N C = 4  
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